3. **Maximum and Minimum Values of Quadratic Expression**

(i) If a > 0, quadratic expression has least value at $x = b / 2a$. This least value is given by 4ac – $b^2/4a = -D/4a$. But their is no greatest value.

(ii) If a < 0, quadratic expression has greatest value at $x = -b/2a$. This greatest value is given by $4ac - b^2 / 4a = -D/4a$. But their is no least value.

4. **Sign of Quadratic Expression**

(i) $a > 0$ and $D < 0$, so $f(x) > 0$ for all $x \in R$ i.e., $f(x)$ is positive for all real values of x.

(ii) $a < 0$ and $D < 0$, so $f(x) < 0$ for all $x \in R$ i.e., $f(x)$ is negative for all real values of x.

(iii) $a > 0$ and $D = 0$, so $f(x) \ge 0$ for all $x \in R$ i.e., $f(x)$ is positive for all real values of x except at vertex, where $f(x) = 0$.

(iv) a < 0 and D = 0, so f(x) \leq 0 for all x \in R i.e., f(x) is negative for all real values of x except at vertex, where $f(x) = 0$.

(v) $a > 0$ and $D > 0$ Let $f(x) = o$ have two real roots α and β ($\alpha < \beta$), then $f(x) > 0$ for $x \in (-\infty, \alpha) \cup (\beta, \infty)$ and $f(x)$ < 0 for all $x \in (\alpha, \beta)$.

(vi) $a < 0$ and $D > 0$ Let $f(x) = 0$ have two real roots α and β ($\alpha < \beta$). Then, $f(x) < 0$ for all $x \in (-\infty, \alpha) \cup (\beta, \infty)$ and $f(x) > 0$ for all $x \in (\alpha, \beta)$.,

5. **Intervals of Roots**

In some problems, we want the roots of the equation $ax^2 + bx + c = 0$ to lie in a given interval. For this we impose conditions on a, b and c. Since, $a \neq 0$, we can take $f(x) = x^2 + b/a x + c/a$.

(i) Both the roots are positive i.e., they lie in $(0, \infty)$, if and only if roots are real, the sum of the roots as well as the product of the roots is positive.

 $\alpha + \beta = -b/a > 0$ and $\alpha\beta = c/a > 0$ with $b^2 - 4ac \ge 0$

Similarly, both the roots are negative i.e., they lie in $(-\infty,0)$ if Froots are real, the sum of the roots is negative and the product of the roots is positive.

i.e., $\alpha + \beta = -b/a < 0$ and $\alpha\beta = c/a > 0$ with $b^2 - 4ac \ge 0$

(ii) Both the roots are greater than a given number k, iFf the following conditions are satisfied $D \ge 0$, $-b/2a > k$ and $f(k) > 0$

(iii) Both .the roots are less than a given number k, iff the following conditions are satisfied D > 0 , $-b/2a > k$ and $f(k) > 0$

(iv) Both the roots lie in a' given interval (k_1, k_2) , iff the following conditions are satisfied

 $D \ge 0, k_1 < -b/2a < k_2$ and $f(k_1) > 0, f(k_2) > 0$

(v) Exactly one of the roots lie in a given interval (k_1, k_2) , iff

 $f(k_1) f(k_2) < 0$

(vi) A given number k lies between the roots iff $f(k) < O$. In particular, the roots of the equation will be of opposite sign, iff 0 lies between the roots.

 \Rightarrow f(0) < 0

Wavy Curve Method

Let $f(x) = (x - a_1)^k_1 (x - a_2)^k_2 (x - a_3)^k_3 \dots (x - a_{n-1})^k_{n-1} (x - a_n)^k_n$

where $k_1, k_2, k_3, \ldots, k_n \in \mathbb{N}$ and $a_1, a_2, a_3, \ldots, a_n$ are fixed natural numbers satisfying the condition.

 $a_1 < a_2 < a_3 < \ldots < a_{n-1} < a_n$.

First we mark the numbers $a_1, a_2, a_3, \ldots, a_n$ on the real axis and the plus sign in the interval of the right of the largest of these numbers, i.e., on the right of a_n . If k_n is even, we put plus sign on the left of a_n and if k_n is odd, then we put minus sign on the left of a_n In the next interval we put a sign according to the following rule.

When passing through the point a_{n-1} the polynomial $f(x)$ changes sign . if k_{n-1} is an odd number and the polynomial $f(x)$ has same sign if k_{n-1} is an even number. Then, we consider the next interval and put a sign in it using the same rule.

Thus, we consider all the intervals. The solution of $f(x) > 0$ is the union of all interval in which we have put the plus sign and the solution of $f(x) < 0$ is the union of all intervals in which we have put the minus Sign.

Descarte's Rule of Signs

The maximum number of positive real roots of a polynomial equation $f(x) = 0$ is the number of changes of sign from positive to negative and negative to positive in $f(x)$.

The maximum number of negative real roots of a polynomial equation $f(x) = 0$ is the number of changes of sign from positive to negative and negative to positive in f(x).

Rational Algebraic In equations

(i) **Values of Rational Expression P(x)/Q(x)** for Real Values of x, where **P(x) and Q(x) are Quadratic Expressions** To find the values attained by rational expression of the form $a_1x^2 +$ $b_1x + c_1 / a_2x^2 + b_2x + c_2$

for real values of x.

(a) Equate the given rational expression to y.

(b) Obtain a quadratic equation in x by simplifying the expression,

(c) Obtain the discriminant of the quadratic equation.

(d) Put discriminant ≥ 0 and solve the in equation for y. The values of y so obtained determines the set of values attained by the given rational expression.

(ii) **Solution of Rational Algebraic In equation** If P(x) and Q(x) are polynomial in x, then the in equation $P(x) / Q(x) > 0$,

 $P(x) / Q(x) < 0$, $P(x) / Q(x) \ge 0$ and $P(x) / Q(x) \le 0$ are known as rational algebraic in equations.

To solve these in equations we use the sign method as

(a) Obtain $P(x)$ and $Q(x)$.

(b) Factorize $P(x)$ and $Q(x)$ into linear factors.

(c) Make the coefficient of x positive in all factors.

(d) Obtain critical points by equating all factors to zero.

(e) Plot the critical points on the number line. If these are n critical points, they divide the number line into $(n + 1)$ regions.

(f) In the right most region the expression $P(x) / Q(x)$ bears positive sign and in other region the expression bears positive and negative signs depending on the exponents of the factors .

Lagrange's identity

If $a_1, a_2, a_3, b_1, b_2, b_3 \neq R$, then

 $(a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2$ $=(a_1b_2-a_2b_1)^2+(a_2b_3-a_3b_2)^2+(a_3b_1-a_1b_3)^2$

Algebraic Interpretation of Rolle's Theorem

Let f (x) be a polynomial having α and β as its roots such that $\alpha < \beta$, $f(\alpha) = f(\beta) = 0$. Also, a polynomial function is everywhere continuous and differentiable, then there exist $θ ∈ (α, β)$ such that $f'(\theta) = 0$. Algebraically, we can say between any two zeros of a polynomial f(x) there is always a derivative $f'(x) = 0$.

Equation and In equation Containing Absolute Value

1. **Equation Containing Absolute Value**

By definition, $|x| = x$, if $x \ge 0$ OR -x, if $x < 0$

If $|f(x) + g(x)| = |f(x)| + g(x)|$, then it is equivalent to the system $f(x) \cdot g(x) \ge 0$.

If $|f(x) - g(x)| = |f(x)| - g(x)|$, then it is equivalent to the system $f(x)$. $g(x) \le 0$.

2.**In equation Containing Absolute Value**

(i) $|x| < a \Rightarrow -a < x < a$ $(a > 0)$ (ii) $|x| \le a \Rightarrow -a \le x \le a$ (iii) $|x| > a \Rightarrow x < -a$ or $x > a$ (iv) $|x| \ge a \Rightarrow x \le b$; – a or $x \ge a$

3. **Absolute Value of Real Number**

 $|x| = -x, x \le 0 \text{ OR } +x, x \ge 0$

(i) $|xy| = |x||y|$ (ii) $|x / y| = |x / y|$ (iii) $|x|^2 = x^2$ (iv) $|x| \ge x$ (v) $|x + y| \le |x| + |y|$ Equality hold when x and y same sign. (vi) $|x - y| \ge ||x| - |y||$

Inequalities

Let a and b be real numbers. If $a - b$ is negative, we say that a is less than b $(a < b)$ and if $a - b$ is positive, then a is greater than $b (a > b)$.

Important Points to be Remembered

(i) If $a > b$ and $b > c$, then $a > c$. Generally, if $a_1 > a_2$, $a_2 > a_3$, ..., $a_{n-1} > a_n$, then $a_1 > a_n$.

(ii) If $a > b$, then $a \pm c > b \pm c$, $\forall c \in R$ (iii) (a) If $a > b$ and $m > 0$, $am > bm$, $\frac{a}{m} > \frac{b}{m}$ (b) If $a > b$ and $m < 0$, $bm < am$, $\frac{b}{m} < \frac{a}{m}$ (iv) If $a > b > 0$, then (a) $a^2 > b^2$ (b) $|a| > |b|$ (c) $\frac{1}{a} < \frac{1}{b}$ (v) If $a < b < 0$, then (a) $a^2 > b^2$ (b) $|a| > |b|$ (c) $\frac{1}{a} > \frac{1}{b}$ (vi) If $a < 0 < b$, then (a) $a^2 > b^2$, if $|a| > |b|$ (b) $a^2 < b^2$, if $|a| < |b|$

(vii) If $a < x < b$ and a, b are positive real numbers then $a^2 < x^2 < b^2$

(viii) If $a < x < b$ and a is negative number and b is positive number, then

(a)
$$
0 \le x^2 < b^2
$$
, if $|b| > |a|$
(b) $0 \le x^2 \le b^2$, if $|a| > |b|$

- (ix) If $\frac{a}{b} > 0$, then (a) $a > 0$, if $b > 0$ (b) $a < 0$, if $b < 0$
- (x) If $a_i > b_i > 0$, where $i = 1, 2, 3, ..., n$, then

$$
a_1a_2a_3...a_n > b_1b_2b_3...b_n
$$

 \sim

content of

- (xi) $|f|x| < a$ and
	- (a) if a is positive, then $-a < x < a$.
	- (b) if *a* is negative, then $x \in \phi$

(xii) If
$$
a_i > b_i
$$
, where $i = 1, 2, 3, ..., n$, then

$$
a_1 + a_2 + a_3 + \dots + a_n > b_1 + b_2 + \dots + b_n
$$
\n(xiii)

\nIf $0 < a < 1$ and n is a positive rational number, then

\n(a) $0 < a^n < 1$

\n(b) $a^{-n} > 1$

Important Inequality

1. **Arithmetico-Geometric and Harmonic Mean Inequality**

(i) If a, $b > 0$ and $a \neq b$, then

$$
\frac{a+b}{2} > \sqrt{ab} > \frac{2}{(1/a)+(1/b)}
$$

(ii) if $a_i > 0$, where $i = 1, 2, 3, ..., n$, then

$$
\frac{a_1 + a_2 + \dots + a_n}{n} \ge (a_1 \cdot a_2 \cdot \dots \cdot a_n)^{1/n}
$$

$$
\ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}
$$

(iii) If $a_1, a_2,..., a_n$ are n positive real numbers and $m_1, m_2,...,m_n$ are n positive rational numbers, then

$$
\frac{m_1a_1 + m_2a_2 + \dots + m_na_n}{m_1 + m_2 + \dots + m_n} > (a_1^{m_1} \cdot a_2^{m_2} \cdot \dots \cdot a_n^{m_n})^{\frac{1}{m_1 + m_2 + \dots + m_n}}
$$

i.e., Weighted AM > Weighted GM

(iv) If a_1, a_2, \ldots, a_n are n positive distinct real numbers, then

(a)
$$
\frac{a_1^m + a_2^m + \ldots + a_n^m}{n} > \left(\frac{a_1 + a_2 + \ldots + a_n}{n}\right)^m \quad \text{if } m < 0 \text{ or } m > 1
$$

(b)
$$
\frac{a_1^m + a_2^m + \ldots + a_n^m}{n} < \left(\frac{a_1 + a_2 + \ldots + a_n}{n}\right)^m, \text{ if } 0 < m < 1
$$

(c) If $a_1, a_2,..., a_n$ and $b_1, b_2,..., b_n$ are rational numbers and M is a rational number, then

$$
\frac{b_1 a_1^m + b_2 a_2^m + \dots + b_n a_n^m}{b_1 + b_2 + \dots + b_n} > \left(\frac{b_1 a_1 + b_2 a_2 + \dots + b_n a_n}{b_1 + b_2 + \dots + b_n}\right)^m, \text{ if } 0 < m < 1
$$
\n
$$
\frac{b_1 a_1^m + b_2 a_2^m + \dots + b_n a_n^m}{b_1 + b_2 + \dots + b_n} < \left(\frac{b_1 a_1 + b_2 a_2 + \dots + b_n a_n}{b_1 + b_2 + \dots + b_n}\right)^m,
$$
\n(d)\n
$$
\text{if } 0 < m < 1
$$

(v) If $a_1, a_2, a_3, \ldots, a_n$ are distinct positive real numbers and p, ,q, r are natural numbers, then

$$
\frac{a_1^{p+q+r} + a_2^{p+q+r} + \dots + a_n^{p+q+r}}{n} > \left(\frac{a_1^p + a_2^p + \dots + a_n^p}{n}\right) \\
\left(\frac{a_1^q + a_2^q + \dots + a_n^q}{n}\right) \left(\frac{a_1^r + a_2^r + \dots + a_n^r}{n}\right)
$$

2. **Cauchy – Schwartz's inequality**

If a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are real numbers, such that

 $(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \le (a_1^2 + a_2^2 + ..., a_n^2) * (b_1^2 + b_2^2 + ..., b_n^2)$

Equality holds, iff $a_1 / b_1 = a_2 / b_2 = a_n / b_n$

3. **Tchebychef's Inequality**

Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are real numbers, such that

(i) If $a_1 \le a_2 \le a_3 \le ... \le a_n$ and $b_1 \le b_2 \le b_3 \le ... \le b_n$, then

$$
n(a_1b_1 + a_2b_2 + a_3b_3 + ... + a_nb_n) \ge (a_1 + a_2 + ... + a_n) (b_1 + b_2 + ... + b_n)
$$

(ii) If If $a_1 \ge a_2 \ge a_3 \ge \ldots \ge a_n$ and $b_1 \ge b_2 \ge b_3 \ge \ldots \ge b_n$, then

 $n(a_1b_1 + a_2b_2 + a_3b_3 + ... + a_nb_n) \le (a_1 + a_2 + ... + a_n)(b_1 + b_2 + ... + b_n)$

4. **Weierstrass Inequality**

(i) If a_1, a_2, \ldots, a_n are real positive numbers, then for $n \ge 2$

$$
(1 + a_1)(1 + a_2) \ldots (1 + a_n) > 1 + a_1 + a_2 + \ldots + a_n
$$

(ii) If a_1, a_2, \ldots, a_n are real positive numbers, then

 $(1 - a_1)(1 - a_2) \dots (1 - a_n) > 1 - a_1 - a_2 - \dots - a_n$

5. **Logarithm Inequality**

(i) (a) When $y > 1$ and $\log_y x > z \Rightarrow x > y^z$

(b) When $y > 1$ and $\log_y x < z \Rightarrow 0 < x < y^z$

(ii) (a) When $0 < y < 1$ and $\log_y x > z \Rightarrow 0 < x < y^z$

(b) hen $0 < y < 1$ and $\log_y x < z \Rightarrow x > y^z$

Application of Inequalities to Find the Greatest and Least Values

(i) If x_1, x_2, \ldots, x_n are n positive variables such that $x_1 + x_2 + \ldots + x_n = c$ (constant), then the product $x_1 * x_2 * ... * x_n$ is greatest when $x_1 = x_2 = ... = x_n = c/n$ and the greatest value is $(c/n)^n$.

(ii) If $x_1, x_2,...,x_n$ are positive variables such that $x_1, x_2,...,x_n = c$ (constant), then the sum $x_1 +$ $x_2 + \ldots + x_n$ is least when $x_1 = x_2 = \ldots = x_n = c^{1/n}$ and the least value of the sum is n (c^{1/n}).

(iii) If x_1, x_2, \ldots, x_n are variables and m_1, m_2, \ldots, m_n are positive real number such that $x_1 + x_2 + \ldots +$ $x_n = c$ (constant), then $x_1^m \times x_2^m \times x_n^m \times x_n^m$ is greatest, when

 $x_1 / m_1 = x_2 / m_2 = ... = x_n / m_n$

 $= x_1 + x_2 + \ldots + x_n / m_1 + m_2 + \ldots + m_n$